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Abstract

Vehicle platooning is a nascent fuel-saving technology. In a platoon,
vehicles travel one after another with small intervehicle distances; trailing
vehicles in a platoon save fuel because they experience less aerodynamic
drag. This work presents a coordinated platooning model with multi-
ple speed options that integrates scheduling, routing, speed selection, and
platoon formation/dissolution in a mixed-integer linear program that min-
imizes the total fuel consumed by a set of vehicles while traveling between
their respective origins and destinations. We are aware of no other inte-
grated platoon routing approach that allows vehicles to select the speed
at which they traverse network edges. The performance of this model is
numerically tested on a grid network and the Chicago-area highway net-
work. We find that the fuel-saving factor of a multivehicle system signifi-
cantly depends on the time each vehicle is allowed to stay in the network;
this time affects vehicles’ available speed choices, possible routes, and the
amount of time for coordinating platoon formation. For problem instances
with a large number of vehicles, we propose and test a heuristic decom-
posed approach that applies a clustering algorithm to partition the set of
vehicles and then routes each group separately. When the set of vehicles
is large and the available computational time is small, the decomposed
approach finds significantly better solutions than does the full model.

1 Introduction

Improving the fuel efficiency of vehicles is essential to increasing energy indepen-
dence and decreasing greenhouse gas emissions. In 2012, approximately 64% of
global crude oil was used by the transportation sector (The International Energy
Agency, 2014). In 2015, nearly 75% of the U.S. petroleum consumption was by
the transportation sector (U.S. Energy Information Administration, 2015). In
2014, nearly 26% of total greenhouse emissions came from the transportation
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sector (U.S. Environment Protection Agency, 2014); cars and light-duty trucks
were responsible for 60% of these emissions, while medium-duty and heavy-duty
vehicles produced 23%.

To help reduce fuel consumption, the U.S. government sets higher fuel ef-
ficiency standards for passenger cars and heavy-duty vehicles (Harrington and
Krupnick, 2012). In response to these regulations, automakers incorporate var-
ious engine technologies, including direct fuel-injection, turbocharging, and de-
celeration fuel shut-off (Navigant Research, 2014); they have also developed
hybrid, fuel-cell, and pure-electric vehicles (Chan, 2007; Pollet et al., 2012).
Fuel-efficiency technologies have a large potential market because they help
consumers save money when fuel prices are high and they help meet efficiency
standards. Most important, improving fuel efficiency is a necessary step toward
environmental sustainability.

Vehicle platooning is another such promising fuel-efficient technology that
involves coordinating multiple vehicles to form a trainlike grouping of vehicles on
the highway. Vehicles in the platoon drive the same speed with small intervehicle
distances; see Figure 1, obtained from Daimler Innovation, for an example. (For
safety and convenience, it is common to consider a maximum platoon length so
that, for example, platoons will not block freeway exits.)

Trailing vehicles in a platoon can save fuel because they experience less
aerodynamic drag than when driving individually. The fuel saving rate for a
trailing vehicle depends on many factors. Two major factors are the speed
and the intervehicle distance. Experiments show that trailing vehicles in a
platoon traveling 80 km/h experience an average reduction in fuel use of 21%
(resp. 16%) when the intervehicle distance is 10 m (resp. 16 m) (Bonnet and
Fritz, 2000). When the speed is reduced to 60 km/h, the average reduction is
16% (resp. 10%). Additionally, when vehicles are in constant communication
with each other, fuel consumption in cascade braking and accelerating due to
the delay of human response can be greatly reduced. For these reasons, the
massive application of vehicle platooning in metropolitan areas may help relieve
traffic congestion (Fernandes and Nunes, 2012).

Active areas of platooning research are broad. Understanding the depen-
dence of fuel reduction on the traveling speed and the intervehicle distance
requires mechanical and aerodynamic analysis (Browned et al., 2004; Luo and
Shladover, 2011; Nowakowski et al., 2011). Other research has focused on the
technology required to enable vehicle-to-vehicle communication, thereby allow-
ing vehicles to maintain a common speed and small intervehicle distances.
The use of wireless communication and navigation systems, including dedi-
cated short-range communication, adaptive cruise control, and GPS, have been
studied (Luo and Shladover, 2011; Nowakowski et al., 2011). Research into
developing control systems to help form stable platoons for safety and fuel-
saving purposes has also been performed (Li et al., 2013; Ghasemi et al., 2015;
Liang, 2016; Liang et al., 2013; Wang et al., 2012) along with studies of platoon-
formation strategies under various road conditions and related communication
protocols (Hobert, 2012).

In contrast to vehicles operating with on-board wireless technologies, other
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Figure 1: Illustration of vehicle platooning: Three heavy-duty vehicles form a
platoon with 15 m intervehicle distances.

researchers have proposed paradigms where the transportation network itself
plays a significant role in platooning. These intelligent transportation systems
rely on monitors, sensors, short- and long-range communication protocols, and
computational technologies to provide an integrated hardware and software base
for realizing various platooning operations (Baskar et al., 2011).

While much research concerns designing and testing the tactical operations,
designing headway control algorithms, and developing coordinating control sys-
tems for platoon formation and maintenance for the purposes of fuel-economy,
stability, and safety (Alam et al., 2010; Bonnet and Fritz, 2000; Li et al., 2013;
Shida and Nemoto, 2009; van de Hoef et al., 2015), our research focuses on the
strategic operations, such as routing, speed selection, and scheduling of a set of
vehicles with different origins and destinations in order to minimize the total
fuel consumed by the group. These optimal routes, speeds, and schedules can
then be sent to each vehicle, for example via GPS instructions.

Such coordinated routing has occasionally been studied. Baskar et al. (2013)
propose a mixed-integer linear programming that minimizes the total travel
time of a set of platoons. Larson et al. (2015) aim to minimize the total fuel
consumption of concerned vehicles distributed in a transport network by routing
and scheduling them to form or leave platoons. Larsson et al. (2015) have shown
that finding an optimal routing and schedule for an arbitrary set of vehicles
is NP-complete, but modeling techniques that exploit constraints common to
many platooning networks have been shown to greatly decrease the time to
solve such problems (Larson et al., 2016). Rather than centralized control, other
researchers consider a distributed network of controllers that collect information
from nearby vehicles and identify opportunities for these vehicles to share some
subset of route edges in order to save fuel (Kammer, 2013; Liang, 2014).

The previous work on optimal platoon routing and coordination that we
are aware of assumes that all vehicles traverse a given edge at the same speed.
In this paper, we extend the model from Larson et al. (2016) to investigate
a coordinated platooning model with multiple speed options (CPMS) for each
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vehicle. This model is presented in Section 2, and a range of experiments are
described in Section 3. Since the fuel consumption of traveling a unit distance
varies at different speeds, this modification provides vehicles more opportunities
to save fuel and more flexibility in satisfying their arrival time requirements.
In Section 4, we develop a heuristic decomposed method to find approximate
solutions to centralized platooning problems with 1,000 vehicles by dividing the
vehicles into groups. The grouping criterion is to minimize differences in the
origins/destinations and starting/destination times among vehicles in the same
subgroup; this is achieved by applying a clustering algorithm on a metric space
of vehicles.

Table 1: Sets and parameters defining a CPMS model instance.

Set Meaning GAMS
V vehicles to route V,W

I network nodes I,J,K

E ⊆ I × I network edges E(V,I,J)

Parameter Meaning GAMS
Ov origin node for v ∈ V O(V)

Dv destination node for v ∈ V D(V)

TO
v origin time for v ∈ V T O(V)

TD
v destination time for v ∈ V T D(V)

Bv,i indicator of node i being the origin/destination of v ∈ V B(V,I)

Sij set of speed options on edge (i, j) ∈ E S(I,J)

Ti,j,s time to take (i, j) ∈ E with speed option s ∈ Sij T(I,J,S)

Ci,j,s fuel cost for taking (i, j) ∈ E with speed option s ∈ Sij C(I,J,S)

Hi,j time to travel from i to j at maximum speed NA
ηs fuel saving rate per unit time under speed option s ETA(S)

2 Coordinated Platooning with Multiple Speeds

We now present the CPMS model, which extends the coordinated platooning
model from Larson et al. (2016) by providing vehicles speed options for each edge
in the network. This additional freedom can decrease the total fuel consump-
tion for two reasons. First, since a vehicle’s fuel consumption per unit distance
varies with respect to its speed, vehicles can drive at a more fuel-efficient speed.
Second, allowing for speed options can increase the number platooning oppor-
tunities. (Introducing these decision variables increases the model complexity.)
A GAMS implementation of this model and example problem data are available
at

http://www.mcs.anl.gov/~jlarson/Platooning.

2.1 Model sets, parameters, and variables

In Table 1, we list the sets and parameters that are used to build the CPMS
model. Because we implement our model in the GAMS modeling language (GAMS
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Table 2: CPMS model variables.

Variable Value Type Meaning GAMS
fv,i,j,s binary 1 if v travels on (i, j) with speed s f(V,I,J,S)

qv,w,i,j,s binary 1 if v follows w on (i, j) with speed s q(V,W,I,J,S)

ev,i,j non-negative time v enters (i, j) time e(V,I,J)

wv,i non-negative time v waits at i time w(V,I)

Table 3: Auxiliary parameters in the edge-based model.

GAMS Parameter Meaning
PE(V,I,J) 1 if v can take (i, j)

PQ(V,W,I,J) 1 if v can follow w

Development Corporation, 2016), we also include the GAMS declarations as
needed. These sets and parameters define a CPMS model instance.

In the CPMS model, the highway network is represented by a directed and
connected graph G(I, E), where I is the set of nodes in the graph and E ⊂ I×I
is the set of directed edges. V is the set of all vehicles considered. The origin
node Ov and the destination node Dv for a vehicle v ∈ V are nodes in I. A
vehicle’s origin time TO

v is defined as the earliest time that v can depart from
Ov. (Vehicle v may wait at Ov until it departs.) Similarly, TD

v is defined as the
latest time by which v must reach Dv. The shortest-path, fastest-speed travel
time between nodes i, j ∈ I is denoted by Hi,j . For a problem to be feasible,
TD
v ≥ TO

v +HOv,Dv
must hold for all vehicles.

For any CPMS instance, we optimize by selecting the vehicles’ routes, speeds,
travel times, and by selecting whether vehicles are platooning on a given edge.
We list these decision variables in Table 2. The variables f and q are binary
variables, while e and w are positive reals.

We use modeling techniques to limit the declaration of some sets, decision
variables, and constraints in order to reduce the model size in GAMS. For
example, even with platooning opportunities, vehicles will never reach edges
that are far away from their shortest path (Larson et al., 2016, Lemma 2.2).
The model can safely restrict the edge set to include a dependence on the vehicle
v and include only edges that each vehicle v can potentially travel on. That is,
an edge is reachable for a vehicle v only if the vehicle reaches and traverses the
edge and still reaches the destination within v’s time constraints.

We list in Table 3 the auxiliary GAMS parameters used to restrict sets and
constraints. In the auxiliary set PE(V,I,J), a triplet (v, i, j) is set to 1 if the
vehicle v ∈ V can potentially travel on edge (i, j) ∈ E. Declaration of E(V,I,J)
is restricted by the following GAMS statement.

E(V,I,J)$(PE(V,I,J)) = yes;

The number of edges in the model is greatly reduced by imposing this restriction.
Topologically, the candidate edges of a vehicle are restricted to be a “narrow
belt” of edges surrounding the shortest path of the vehicle.
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Similarly, PQ(V,W,I,J) is set to 1 when vehicles v, w ∈ V can feasibly pla-
toon on the edge (i, j). Formally, the following inequality must hold:

max
{
TO
v +HOv,i, T

O
w +HOw,i

}
+Hi,j

≤ min
{
TD
v −HDv,j , T

D
w −HDw,j

}
.

(1)

This ensures that if v and w go from their respective origin nodes to node i, go
through edge (i, j) simultaneously at the fastest allowable speed, and go from
node j to their respective destination nodes, then they must arrive by their
deadlines.

The use of PQ and PE to reduce the model variables and constraints is essen-
tial to solving real-world platooning instances with more than 10 vehicles.

2.2 Assumptions

We make the following assumptions in our model. First, each vehicle is allowed
to drive at any speed Sij on any arc (i, j) ∈ E, where Sij (Table 1) is the feasible
set of speeds that a vehicle can drive at on edge (i, j). Second, we ignore any
traffic conditions that may affect the vehicle speed. Third, for the considered
vehicles, the coordinated platooning problem we investigate is formulated and
solved before the earliest entering time of the vehicles in the network, that is,
min
v∈V

TO
v . Fourth, vehicles are numbered so that vehicles with smaller smaller

indices lead platoons. Note that this assumption can be embedded in the def-
inition of PQ(V,W,I,J) such that a quadruplet (v, w, i, j) can be nonzero only
if v < w. This assumption reduces some unnecessary symmetry and does not
affect the total fuel consumption. (Vehicles can easily be reordered in postpro-
cessing if necessary.)

2.3 Objective function

The collective amount of fuel used is

∑

v,i,j

∑

s∈Sij

Ci,j,s

(
fv,i,j,s − ηs

∑

w

qv,w,i,j,s

)
. (2)

Ci,j,s is the amount of fuel used by a vehicle to traverse edge (i, j) at speed s,
and ηs is the fraction of fuel saved by platooning at speed s. One can consider
Ci,j,s to be a vehicle-dependent value without increasing the number of decision
variables, but we do not do so here. The first term in (2) is the fuel consumption
of vehicles driving without another vehicle in front of them; the second term is
the amount of saved fuel due to platooning. If desired, one can also include a
penalty in the objective for the time vehicles spend waiting. To study the upper
bound on possible platoon savings, we do not include wait times.

2.4 Multispeed coordinated platooning model constraints

We now declare the constraints for the CPMS model.
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• Each vehicle can have at most one speed per edge.

∑

s∈Sij

fv,i,j,s ≤ 1 ∀v ∈ V, (i, j) ∈ E. (3)

• Node outflows must equal inflows:

∑

j:(i,j)∈E

∑

s∈Sij

fv,i,j,s =
∑

j:(j,i)∈E

∑

s∈Sji

fv,j,i,s +Bv,i

∀v ∈ V, i ∈ I,
(4)

where Bv,i is 1 if i = Ov, -1 if i = Dv, and 0 otherwise.

• When platooning, enter times must be equal.

−M1l


1−

∑

s∈Sij

qv,w,i,j,s


 ≤ ev,i,j − ew,i,j

≤M1r


1−

∑

s∈Sij

qv,w,i,j,s




∀v, w ∈ V, (i, j) ∈ E, v > w.

(5)

• A vehicle can follow at most one other vehicle.
∑

w:w<v

qv,w,i,j,s ≤ 1 ∀v ∈ V, (i, j) ∈ E, s ∈ Sij . (6)

• A vehicle can follow only one vehicle in its platoon.

∑

w:w>v

qw,v,i,j,s ≤ 1

∀v ∈ V, (i, j) ∈ E, s ∈ Sij .

(7)

• Platooning requires flow for both leader and follower.

2qv,w,i,j,s ≤ fv,i,j,s + fw,i,j,s

∀v, w ∈ V, v > w, (i, j) ∈ E, s ∈ Sij .
(8)

• TO
v plus wv,Ov is the origin enter time.

−M2l

(
1−

∑

s∈SOv,j

fv,Ov,j,s

)
≤ ev,Ov,j − TO

v − wv,Ov

≤M2r

(
1−

∑

s∈SOv,j

fv,Ov,j,s

)

∀v ∈ V, j ∈
{
j′ ∈ I : (Ov, j

′) ∈ E
}
.

(9)
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• TD
v is the final enter time plus the time required to travel the final edge plus
wv,Dv .

−M3l

(
1−

∑

s∈Si,Dv

fv,i,Dv,s

)

≤ TD
v − ev,i,Dv

− wv,Dv
−

∑

s∈Si,Dv

Ti,Dv,sfv,i,Dv,s

≤M3r

(
1−

∑

s∈Si,Dv

fv,i,Dv,s

)

∀v ∈ V, i ∈
{
i′ ∈ I : (i′, Dv) ∈ E

}
.

(10)

• Enter times at intermediate nodes must match the time increment due to
travel and waiting time.

−M4l

(
2−

∑

s∈Sij

fv,i,j,s −
∑

s′∈Sjk

fv,j,k,s′
)

≤ ev,j,k − ev,i,j − wv,j −
∑

s∈Sij

Ti,j,sfv,i,j,s

≤M4r

(
2−

∑

s∈Sij

fv,i,j,s −
∑

s′∈Sjk

fv,j,k,s′
)

∀v ∈ V, (i, j), (j, k) ∈ E, j 6= Ov, Dv.

(11)

• If there is no flow, the enter time must be zero.

ev,i,j ≤M5

∑

s∈Sij

fv,i,j,s ∀v ∈ V, (i, j) ∈ E. (12)

• If there is no flow, the wait time must be zero.

wv,i ≤M6


∑

i,j

∑

s∈Sij

∑

s′∈Sji

fv,i,j,s + fv,j,i,s′




∀v ∈ V, i ∈ I.

(13)

We now briefly explain these constraints. Constraint (4) is the route planning
constraint for each vehicle; (5) ensures time consistency of two vehicles that are
platooning on an edge; and (6) and (7) define the leader-follower matching rule.
In other words, constraints (6) and (7) ensure that every trailing vehicle in a
platoon is set to follow the lead vehicle but not other vehicles in its platoon.
Constraint (8) ensures speed consistency for two vehicles in the same platoon
on an edge. Note that vehicles are allowed to wait at intermediate nodes in
the CPMS model. In the numerical experiments, however, we limit the places
where waiting can occur, experiments (Section 3). The remaining constraints
ensure that each vehicle’s traveling and waiting times are consistent.
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Note that a big-M parameter is involved in our formulation. One possible
choice for M in constraints (5), and (9)-(13) is

M = max
v

{
TD
v

}
.

However, such an M does not need to be set uniformly. Instead, we can set
different values of M for these constraints to tighten the formulation and tune
M according to the specific instance that needs to be solved. Proposition 2.1
gives a way of setting M, and we implement these M-values in the GAMS
model for numerical experiments. (Mixed-integer linear programming solvers
often tighten M further during preprocessing.)

Proposition 2.1. In the CPMS model, the following ways of setting M for each
related constraint independently is valid for any feasible solution.

(a) In (5), for the constraint induced by v, w ∈ V and (i, j) ∈ E such that
(v, w, i, j) ∈ PQ(V,W,I,J), we can set M1r = (TD

v − min
s∈Sij

Tijs −Hj,Dv )+.

and M1l = (TD
w −min

s∈Sij

Tijs−Hj,Dw
)+ for each v, w ∈ V , v > w, (i, j) ∈ E;

(b) In (9), we can set M2r = 0 and M2l = TD
v −HOv,Dv

for each v ∈ V .

(c) In (10), we can set M3l = 0 and M3r = TD
v for each v ∈ V .

(d) In (11), we can set M4r = (TD
v −mins∈Sj,k

Tj,k,s −Hk,Dv )+ for each v ∈ V
and (i, j) ∈ E and M4l = (TD

v −Hj,Dv
)+ for each v ∈ V and j ∈

{
j′ ∈ I :

(i, j′), (j′, k) ∈ E
}

.

(e) In (12), we can set M5 = (TD
v −mins∈Sij

Ti,j,s −Hj,Dv
)+ for each v ∈ V .

(f) In (13), we can set M6 = (TD
v − TO

v −HOv,i −Hi,Dv
)+ for each v ∈ V ,

i ∈ I.

In all cases, (x)+ = max{0, x}.

Proof. We prove only part (d); the proofs for the other parts are similar. For
M4r, we require

ev,j,k − ev,i,j − wv,j −
∑

s∈Sij

Ti,j,sfv,i,j,s ≤M4r. (14)

We have three cases for a feasible solution.

1. Vehicle v does not pass (j, k): Then ev,j,k = 0, and hence M4r = 0 satisfies
the requirement.

2. Vehicle v passes (j, k) and (i, j): Then we have ev,j,k − ev,i,j − wv,j −∑
s∈Sij

Ti,j,sfv,i,j,s = 0, and hence M4r = 0 satisfies the requirement.
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Figure 2: Networks considered: a grid (left) and the Chicago-area highways
(right).

3. Vehicle v passes (j, k) but does not pass (i, j): In this case, we have
ev,i,j = 0 and fv,i,j,s = 0. Then (14) becomes ev,j,k − wv,j ≤M4r. Since
ev,j,k + mins∈Sj,k

Tj,k,s + Hk,Dv
≤ TD

v and wv,j ≥ 0, M4r = (TD
v −

mins∈Sj,k
Tj,k,s −Hk,Dv

)+ satisfies the requirement.

For M4l, we require

ev,i,j + wv,j +
∑

s∈Sij

Ti,j,sfv,i,j,s − ev,j,k ≤M4l. (15)

Similarly, we have three cases for a feasible solution

1. The vehicle v does not pass either (i, j) or (j, k). Then (15) becomes
wv,j ≤ M4l. Since TO

v +HOv,j + wv,j +Hj,Dv
≤ TD

v , M4l = (TD
v − TO

v −
HOv,j −Hj,Dv

)+ satisfies the requirement.

2. The vehicle v passes (i, j), but does not pass (j, k). Then ev,j,k = 0. Since
ev,i,j +

∑
s∈Sij

Ti,j,sfv,i,j,s + wv,j + Hj,Dv ≤ TD
v , M4l = (TD

v − Hj,Dv )+

satisfies the requirement.

3. The vehicle v passes (j, k), but does not pass (i, j). Then (15) becomes
wv,j − ev,j,k ≤ M4l. Since wv,j ≤ TD

v − TO
v −HOv,j −Hj,Dv and ev,j,k ≥

TO
v +HOv,j , M4l = (TD

v −2TO
v −2HOv,j−Hj,Dv )+ satisfies the requirement.

4. The vehicle v passes both (i, j) and (j, k). Then M4l = 0 satisfies the
requirement.

This completes the proof.

3 Numerical Experiments

We test the computational performance of the CPMS model on a grid network
and a representation of the Chicago-area highway network. From these results,
we gain insight into the collective fuel savings that can be achieved with the
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coordinated platooning technology compared with each vehicle traversing its
shortest path separately.

The considered networks are shown in Figure 2. The Chicago network is
simplified by preprocessing the graph. In particular, nodes and edges are re-
moved that cannot be used in any feasible solution, such as nodes that have
no incoming edges and are not the origin node for some trip. Reductions also
include replacing a node j with one incoming edge (i, j) and one outgoing edge
(j, k) with a single edge (i, k) when node j is neither the origin nor the desti-
nation for any vehicle. If edge (i, k) already exists, then we keep the edge with
the smallest fuel cost. If we assume there is no cost for waiting at a node, these
modifications have no impact on the potential to platoon. When we have multi-
ple speeds, however, the preprocessing does affect the fuel consumption savings
that could be achieved. That is, we may reduce fuel consumption further by
selecting different speeds along the edges in the original path as long as we reach
the platooning formation point in time to join the platoon. These additional
savings can easily be recovered during a postprocessing phase when the edges
are disaggregated. A final part of the preprocessing evaluates the shortest paths
from the origin to the destination and eliminates paths that cannot be used to
reach the destination given the arrival deadline. We note that there may be
cases where the same platoons are not selected in the CPMS model using the
reduced and the original network. Using the original Chicago highway network,
however, quickly results in an intractable instance.

3.1 Numerical setup

We first consider a 50-vehicle system with their origin/destination nodes ran-
domly distributed throughout the network. Origin/destination nodes in the grid
network are randomly generated. For the Chicago network, the origin/destination
pairs are drawn uniformly from the 100 most common routes in the POLARIS (Auld
et al., 2016) simulation of the Chicago highway network. We investigate two
sets of speed parameters. The first allows two speed options while the second
allows five speed options. All speed options are available for all vehicles on all
edges. Note that speed is not directly correlated with fuel efficiency. Studies
show that the most fuel-efficient speed is about 55 ∼ 60 mph, and fuel efficiency
decreases as the speed increases and decreases. Detailed information about our
two settings is given in Table 4 and Table 5, respectively. Note that we order
the speeds so that si is greater than si+1 (s1 corresponds to the fastest speed).
The numerical dependence of miles per gallon on the speed is based on U.S.
Department of Energy (n.d., 2011). Using the results from Bonnet and Fritz
(2000), a reasonable fuel-saving factor of follower vehicles in a platoon is about
0.15 at high speed and 0.1 at low speed. Therefore, we set set η = 0.15 for the
speed at 75 miles/h and η = 0.1 for the speed at 50 miles/h.

Origin times TO
v for each vehicle are drawn uniformly from [0, 100], and

destination times TD
v are set to

TD
v = TO

v + (1 + P )HOv,Dv
, (16)
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where HOv,Dv is the minimal time required to go from Ov to Dv using the
shortest path at the maximum speed and P is the pause time ratio that describes
how much time vehicle v can stay in the network to wait for other vehicles
relative to its shortest-path traveling time. From the CPMS model, each vehicle
can utilize its pause time to wait for other vehicles to form platoons at certain
nodes in the network, to travel at slower speeds, or to perform some combination
of the two in order to save fuel.

In reality, vehicle routes are given only TO
v and TD

v directly, and the pause
time must be inferred. Hence P may be different for different vehicles in real-
world problems, but we simplify its setting for our experiments. For a given
network and speed setting, we construct 21 instances by setting P uniformly for
every vehicle to be [0, 0.1, . . . , 2.0], respectively. In summary, our instances are
specified by the following factors.




Chicago
vs.
grid


⊗




2 speeds
vs.

5 speeds


⊗

[
P ∈ {0, 0.1, . . . , 2.0}

]
.

3.2 Analysis of computational times and solution quality

To analyze the performance of the CPMS model, we implemented it in GAMS
and solved the aforementioned problem instances using Gurobi (Gurobi Opti-
mization, Inc., 2017) with one thread. Gurobi was set to stop when the relative
optimality gap was 0.05% or when the computational time reached one hour.
The objective value after five minutes of computational time was also recorded.
The CPMS model and example data are freely available at

http://www.mcs.anl.gov/~jlarson/Platooning.

The objective values (total fuel consumption) and computational times for
a range of pause percentages P are plotted in Figures 3(a)–3(b) (resp. Fig-
ures 3(c)–3(d)) corresponding to the Chicago highway (resp. grid) network. Also
shown is the baseline case where vehicles never platoon but only adjust their
speeds in order to minimize their fuel use.

Of the Chicago-network instances, 45% do not solve within a one-hour time
limit, while 92% of grid-network instances reach this limit. For the 2-speed set-
ting, most Chicago-network instances are finished within thirty minutes, while
most grid-network instances reach the one-hour limit. This may seem counter-
intuitive given that the Chicago network is much larger than the grid network.

Table 4: Parameters of two-speed setting used in numerical experiments.

Speed Options s1 s2
miles per hour 75 55

time cost per unit distance 1.00 1.36
fuel cost per unit distance 1.00 0.77
platooned fuel saving rate η 0.15 0.10
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((a)) Chicago network, 2 speeds
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((b)) Chicago network, 5 speeds
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((c)) Grid network, 2 speeds
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Figure 3: Computational time (blue line) and solution quality (green and red
lines) for the CPMS model of the Chicago highway network as the willingness
to wait increases. The solid green line is the objective value at termination
(with the runtime limited to one hour). The dotted green line is the objective
lower bound at the termination. The dashed green line is the objective value
after five minutes. The solid red line represents the total fuel consumption when
platooning is not allowed.
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We believe the grid network to be the more difficult test case because of the
existence of many shortest paths between most pairs of vertices. Coordinating
platoons therefore requires significant exploration of the search space. Unsur-
prisingly, the 5-speed cases take significantly more computational time than do
the 2-speed instances.

If the pause ratio P is zero, the problem instances are quickly solved be-
cause many decision variables are forced: by (16), vehicles must travel on a
shortest path at the fastest speed. The computational time quickly increases
as P increases from zero. This is especially pronounced in Figure 3(b) and
Figures 3(c)–3(d).

Even though Figure 3 shows that one hour is often not enough to reduce
the relative optimality gap below 0.05%, the solution after five minutes has
nearly the same objective value as the solution after one hour. For the Chicago-
network (resp. grid-network), instances, the average relative optimality gap over
all instances is 0.16% (resp. 0.61%) and the maximum optimality gap is 0.73%
(resp. 5.3%). These indicate that Gurobi finds good solutions to nearly all
CPMS instances considered in a short amount of time. Therefore, we believe
the CPMS model is suitable for practical use even when a central coordinator
wishes to quickly adjust routes and schedule in response to changing traffic
patterns.

3.3 Analysis of fuel-saving performance

The pause time P can be interpreted as the amount of time vehicles are willing to
deviate from their shortest path times. When P = 0, the solution of the CPMS
model routes are the union of shortest paths for each vehicle, and vehicles do
not form platoons unless they meet another vehicle coincidentally. Hence, the
P = 0 fuel consumption is the largest among all cases of pause time, and the
computational time is small. As the pause time increases, opportunities for
platooning appear and opportunities to use fuel-efficient speeds appear, as well;
hence the corresponding fuel consumption decreases.

When P > 0, the amount of fuel saved (versus the fuel consumption at
P = 0) comes from vehicles using slower speeds and forming platoons. To
understand their relative contributions for each value of P , we also compute
the fuel consumption of each vehicle traveling on its shortest path without pla-
tooning; these values are represented by the red curve in Figures 3(a)–3(b) and
Figures 3(c)–3(d). For both platooning-forbidden instances and platooning-
allowed instances, vehicles do not have to travel at the fastest speed when P

Table 5: Parameters of five-speed setting used in numerical experiments.

Speed Options s1 s2 s3 s4 s5
miles per hour 75 70 65 60 55

time cost/distance 1.00 1.07 1.15 1.25 1.36
fuel cost/distance 1.00 0.93 0.84 0.79 0.77

platn-fuel saving rate η 0.15 0.14 0.13 0.11 0.10
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is sufficiently large. This strategy is reflected from Figures 3(a)–3(b) and Fig-
ures 3(c)–3(d) by the decreasing trend of the red curve and the solid green curve.
For platooning-forbidden instances, after P is greater than the threshold that
allows every vehicle traveling at the slowest speed, no further fuel reduction is
possible. This situation occurs when the red curve becomes flat in the above fig-
ures; this threshold occurs when P is approximately 0.4. We see that significant
savings can be incurred when vehicles travel at slower speeds.

The decrease in fuel use for P between 0 and 0.4 is faster for the 5-speed
instances for both networks. This arises from vehicles having more speed op-
tions, and hence vehicles can drive at intermediate speeds in order to save fuel
but still arrive at their destinations on time, as P deviates from 0.

We define two quantities γspeed and γplatoon that reflect the ratio of fuel
saving due to the speed-choice strategy and the platooning strategy, respectively.
They are functions of the pause ratio, and their expressions are given as follows:

γspeed(P ) =
F forb(0)− F forb(P )

F forb(0)
,

γplatoon(P ) =
F forb(P )− F allow(P )

F forb(0)
,

where quantities F forb(P ) and F allow(P ) respectively represent the fuel con-
sumptions of platooning-forbidden (red curves) and platooning-allowed (solid
green curves) modes at pause ratio P . Both γspeed and γplatoon increase as the
pause ratio increases, and they reach their upper limits once the pause ratio is
large enough. Note that we must always have γplatoon < η, since η is the physical
limit of the fuel-saving factor of a platooned vehicle. For numerical instances
with five speeds and P = 2.0 (the best fuel saving instances in our study), we
have γspeed ≈ 23.0% and γplatoon ≈ 6.2% for the Chicago-area highway network
and γspeed ≈ 22.5% and γplatoon ≈ 2.3% for the grid network. The data shows
that γplatoon for the Chicago-area highway network is considerably greater than
that for the grid network. The reason is possibly that the origin/destination
pairs for the Chicago-area highway network are taken from the most commonly
traveled routes. Therefore, significant overlap in vehicle routes is possible.

4 Heuristic Decomposition for Large-Scale Prob-
lems

Even for the 50-vehicle system with five speed options, the CPMS model involves
56,970 binary decision variables for the Chicago-area highway network; after one
hour of computational time, the relative optimality gap is approximate 0.7%
for some problem instances. For a 100-vehicle system, the number of binary
variables increases to 780,610; this growth makes us believe that generating
the instances of the CPMS model for hundreds of vehicles will be prohibitively
expensive.
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Of course, two vehicles are unlikely to form a platoon somewhere in an
optimal strategy when their respective origin nodes, destination nodes, origin
times, and destination times differ greatly. While this situation may be captured
by the definition of PQ when (1) holds, we are further inspired to decompose
large problem instances. The essential idea is to define a metric space on the
set of vehicles and apply a clustering algorithm on this metric space in order to
partition the set of vehicles. We then can solve a smaller CPMS model for each
group independently. We define the metric

d(v1, v2) :=
(
dist2(Ov1 , Ov2) + dist2(Dv1 , Dv2)

+(TO
v1 − TO

v2)2 + (TD
v1 − TD

v2 )2
)1/2

(17)

for all v1, v2 ∈ V , where dist(i, j) is the distance between nodes i and j in
the undirected graph extension of the considered road network. The metric
(17) measures the similarity between two vehicles’ routes in space and time.
To better achieve this task, we unify the scale of the distance and time for
evaluating d(·, ·).

The clustering method used to decompose the set of vehicles is given in
Algorithm 1, which is based on a modification of a K-sets algorithm of Chang
et al. (2016) that includes a restriction on the size of each cluster. This clustering
algorithm involves using the triangular distance.

Definition 4.1. In a metric space, the triangular distance from a point x to a
set S, denoted by ∆(x, S), is defined as

∆(x, S) =
1

|S|2
∑

z1∈S

∑

z2∈S

(
d(x, z1) + d(x, z2)− d(z1, z2)

)
. (18)

Algorithm 1 K-set clustering algorithm on the metric space of vehicles

1: Input: A vehicle set V = {v1, v2, . . . , vn}, metric d, a number of clusters
K, and a maximum size L of each cluster satisfying KL > |V |.

2: Output: A partition {S1, . . . , SK} of V with |Si| ≤ L.
3: Initialization: Choose arbitrarily K disjoint nonempty sets S1, . . . , SK

that partition V .
4: for i = 1, 2, . . . , n do
5: Compute ∆(vi, Sk) for each set Sk using (18).
6: Find k∗ = argmin

{k∈[K]:|Sk|<L}
∆(xi, Sk).

7: if xi /∈ Sk∗ then
8: Sk∗ ← Sk∗ ∪ {xi}.
9: end if

10: end for
11: Go to Line 4 until there is no further change.

16



0 50 100 150 200

Pause percents (P)

10000

11000

12000

13000

14000

15000

Fu
e
l 
C

o
n
su

m
p
ti

o
n

Undecomposed Decomposed

((a)) Chicago network with 250 vehicles

0 50 100 150 200

Pause percents (P)

1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

Fu
e
l 
C

o
n
su

m
p
ti

o
n

Undecomposed Decomposed

((b)) Grid network with 250 vehicles

0 50 100 150 200

Pause percents (P)

40000

45000

50000

55000

60000

Fu
e
l 
C

o
n
su

m
p
ti

o
n

Undecomposed Decomposed

((c)) Chicago network with 1,000 vehicles

0 50 100 150 200

Pause percents (P)

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

Fu
e
l 
C

o
n
su

m
p
ti

o
n

Undecomposed Decomposed

((d)) Grid network with 1,000 vehicles

Figure 4: Numerical comparison between the decomposed and undecomposed
approaches applied to a 250-vehicle system with the five speed settings (a) and
(b), and to a 1,000-vehicle system with five speed settings (c) and (d). (The
undecomposed approach is unable to identify a lower bound in one hour for the
1,000-vehicle instances.)
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We perform further numerical experiments on CPMS to test the performance
of the decomposed approach versus the undecomposed approach applied to a
large-scale system of vehicles, for example, a 250-vehicle system (Section 4.1)
and a 1,000-vehicle system (Section 4.2), respectively.

4.1 Numerical experiments on a 250-vehicle system

To test the performance of our decomposed approach, we considered a 250-
vehicle system with five speeds on the Chicago highway and grid networks. In
this case, the number of binary variables and constraints for the entire CPMS
model is still manageable. For the undecomposed approach, we ran Gurobi
on the entire 250-vehicle CPMS instance for one hour. For the decomposed ap-
proach, we used Algorithm 1 to divide 250 vehicles into six similarity groups with
the maximum group size 50, and ran each for 10 minutes (60 minutes/6 groups)
for each group independently and summed their siz objective values. Results
are shown in Figures 4(a)–4(b).

Note that for the two networks, the decomposed approach gives slightly bet-
ter objective values than does the undecomposed approach when P = 0.1 ∼ 0.4.
In contrast, the undecomposed approach slightly outperforms the decomposed
approach for the grid-network instances at P = 1.2 ∼ 2.0. This result occurs be-
cause the arrival time constraints are not binding for large P , thereby reducing
the complexity of solving the entire problem. In such cases, the undecomposed
approach identifies intercluster platooning opportunities, helping further reduce
fuel consumption; these are opportunities unavailable to the decomposed ap-
proach.

4.2 Numerical experiments on a 1,000-vehicle system

We also compared performance of the two approaches on a 1,000-vehicle sys-
tem with the five speed settings on the both networks. For the undecomposed
approach, we still limited Gurobi to one hour of computational time. For the de-
composed approach, we partitioned the 1,000 vehicles into 25 similarity groups
with a maximum group size of 60. The CPMS instances for each group were
given 2.4 minutes (60 minutes/25 groups) of computational time. The perfor-
mance of both methods is shown in Figures 4(c)–4(d). Note that the undecom-
posed approach is much less effective at solving such large problem instances:
the relative gap between the two approaches ranges from 12.5% to 30%. The
undecomposed approach also fails to estimate a lower bound on fuel consump-
tion. Furthermore, the fuel consumption given by the undecomposed approach
is not monotonically decreasing as P increases. These observations indicate
that a system of 1,000 vehicles is beyond the limits of problems that can be
addressed by the undecomposed approach. Furthermore, the performance of
the two methods indicates that a decomposed approach can obtain a reasonable
suboptimal solution for problem instances with a large number of vehicles.
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5 Conclusion and Discussion

The CPMS model improves the model from Larson et al. (2016) in that vehi-
cles can traverse edges at different speeds; this more accurately models the real
world. This freedom also creates opportunities for fuel savings in addition to
those offered by platooning. We also propose a clustering algorithm to extend
the applicability of our platooning model by decomposing large-scale problems
into independent subproblems. Our numerical experiments show that in little
computational time, the decomposed approach can find much better solutions
than the undecomposed approach can when applied to a large set of vehicles
distributed in a complex transport network. Although the undecomposed ap-
proach can outperform the decomposed approach, their relative differences are
small in problem instances with a few hundred vehicles.

We are currently improving our vehicle platooning model in order to address
important real-world situations. Work includes extending the model to account-
ing for traffic flow and congestion by allowing the cost of traversing an edge to
change over time. We are also interested in understanding the practicality of
forming platoons under various traffic flow conditions. These improvements
require incorporating governing equations of traffic flow in the model, which
inevitably complicate the model; care will be necessary in order to ensure that
problem instances remain tractable.

To further improve the decomposed approach for large-scale problems, we
believe a two-phase optimization strategy will be beneficial. In the first phase,
subproblems will solved independently as was done in Section 4. The second
phase will involve fixing vehicle routes obtained from the first phase but enabling
schedule coordination in order to allow for more interclustering platooning op-
portunities.
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